Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation

代谢物调节相互作用通过雷帕霉素靶标 (TOR) 激酶激活控制植物呼吸代谢

阅读:7
作者:Brendan M O'Leary, Glenda Guek Khim Oh, Chun Pong Lee, A Harvey Millar

Abstract

Respiration rate measurements provide an important readout of energy expenditure and mitochondrial activity in plant cells during the night. As plants inhabit a changing environment, regulatory mechanisms must ensure that respiratory metabolism rapidly and effectively adjusts to the metabolic and environmental conditions of the cell. Using a high-throughput approach, we have directly identified specific metabolites that exert transcriptional, translational, and posttranslational control over the nighttime O2 consumption rate (RN) in mature leaves of Arabidopsis (Arabidopsis thaliana). Multi-hour RN measurements following leaf disc exposure to a wide array of primary carbon metabolites (carbohydrates, amino acids, and organic acids) identified phosphoenolpyruvate (PEP), Pro, and Ala as the most potent stimulators of plant leaf RN Using metabolite combinations, we discovered metabolite-metabolite regulatory interactions controlling RN Many amino acids, as well as Glc analogs, were found to potently inhibit the RN stimulation by Pro and Ala but not PEP. The inhibitory effects of amino acids on Pro- and Ala-stimulated RN were mitigated by inhibition of the Target of Rapamycin (TOR) kinase signaling pathway. Supporting the involvement of TOR, these inhibitory amino acids were also shown to be activators of TOR kinase. This work provides direct evidence that the TOR signaling pathway in plants responds to amino acid levels by eliciting regulatory effects on respiratory energy metabolism at night, uniting a hallmark mechanism of TOR regulation across eukaryotes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。