Divide and conquer: the Pseudomonas aeruginosa two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits

分而治之:铜绿假单胞菌双组分混合 SagS 通过不同的调节回路实现生物膜形成,并使其对抗菌剂具有耐受性

阅读:5
作者:Olga E Petrova, Kajal Gupta, Julie Liao, James S Goodwine, Karin Sauer

Abstract

The opportunistic pathogen Pseudomonas aeruginosa forms antimicrobial resistant biofilms through sequential steps requiring several two-component regulatory systems. The sensor-regulator hybrid SagS plays a central role in biofilm development by enabling the switch from the planktonic to the biofilm mode of growth, and by facilitating the transition of biofilm cells to a highly tolerant state. However, the mechanism by which SagS accomplishes both functions is unknown. SagS harbours a periplasmic sensory HmsP, and phosphorelay HisKA and Rec domains. SagS domain was used as constructs and site-directed mutagenesis to elucidate how SagS performs its dual functions. It was demonstrated that HisKA-Rec and the phospho-signalling between SagS and BfiS contribute to the switch to the biofilm mode of growth, but not to the tolerant state. Instead, expression of SagS domain constructs harbouring HmsP rendered ΔsagS biofilm cells as recalcitrant to antimicrobial agents as wild-type biofilms, likely by restoring BrlR production and cellular c-di-GMP levels to wild-type levels. Restoration of biofilm tolerance by HmsP was independent of biofilm biomass accumulation, RsmA, RsmYZ, HptB and BfiSR-downstream targets. Our findings thus suggest that SagS likely makes use of a "divide-and-conquer" mechanism to regulate its dual switch function, by activating two distinct regulatory networks via its individual domains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。