Geometric constraints of endothelial cell migration on electrospun fibres

电纺纤维上内皮细胞迁移的几何限制

阅读:4
作者:Maqsood Ahmed, Tiago Ramos, Paul Wieringa, Clemens van Blitterswijk, Jan de Boer, Lorenzo Moroni

Abstract

Biomaterial scaffolds that can form a template for tissue growth and repair forms the basis of many tissue engineering paradigms. Cell migration and colonisation is an important, and often overlooked, first step. In this study, fibrous guidance structures were produced via electrospinning and the effect of physical features such as fibre diameter (ranging from 500 nm to 10 μm) on endothelial cell migration was assessed. Using a modified wound healing assay, fibre diameter was found to have a significant effect on the rate of wound closure and the peak migration velocity of the cells with scaffold diameter shown to influence both morphology and alignment of the migrating cells. The expression, phosphorylation and distribution of focal adhesion kinase (FAK) was disrupted on the different scaffolds with small-diameter scaffolds exhibiting increased FAK phosphorylation with the kinase present in the cytosol whereas on large-diameter scaffolds FAK was largely restricted to focal adhesions at the cell periphery. This study demonstrates that electrospun scaffolds can be used to model cell migration on fibrous substrates, and particularly for the studying effects of physical features of the substrate, and that FAK is a key mediator of cell-scaffold interactions on migrating cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。