Sulforaphane improves dysregulated metabolic profile and inhibits leptin-induced VSMC proliferation: Implications toward suppression of neointima formation after arterial injury in western diet-fed obese mice

萝卜硫素改善失调的代谢状况并抑制瘦素诱导的平滑肌细胞增殖:对西方饮食喂养的肥胖小鼠动脉损伤后新生内膜形成的抑制作用

阅读:6
作者:Noha M Shawky, Prahalathan Pichavaram, George S G Shehatou, Ghada M Suddek, Nariman M Gameil, John Y Jun, Lakshman Segar

Abstract

Sulforaphane (SFN), a dietary phase-2 enzyme inducer that mitigates cellular oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) activation, is known to exhibit beneficial effects in the vessel wall. For instance, it inhibits vascular smooth muscle cell (VSMC) proliferation, a major event in atherosclerosis and restenosis after angioplasty. In particular, SFN attenuates the mitogenic and pro-inflammatory actions of platelet-derived growth factor (PDGF) and tumor necrosis factor-α (TNFα), respectively, in VSMCs. Nevertheless, the vasoprotective role of SFN has not been examined in the setting of obesity characterized by hyperleptinemia and insulin resistance. Using the mouse model of western diet-induced obesity, the present study demonstrates for the first time that subcutaneous delivery of SFN (0.5mg/Kg/day) for~3weeks significantly attenuates neointima formation in the injured femoral artery [↓ (decrease) neointima/media ratio by~60%; n=5-8]. This was associated with significant improvements in metabolic parameters, including ↓ weight gain by~52%, ↓ plasma leptin by~42%, ↓ plasma insulin by~63%, insulin resistance [↓ homeostasis model assessment of insulin resistance (HOMA-IR) index by~73%], glucose tolerance (↓ AUCGTT by~24%), and plasma lipid profile (e.g., ↓ triglycerides). Under in vitro conditions, SFN significantly decreased leptin-induced VSMC proliferation by~23% (n=5) with associated diminutions in leptin-induced cyclin D1 expression and the phosphorylation of p70S6kinase and ribosomal S6 protein (n=3-4). The present findings reveal that, in addition to improving systemic metabolic parameters, SFN inhibits leptin-induced VSMC proliferative signaling that may contribute in part to the suppression of injury-induced neointima formation in diet-induced obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。