Coating of SPIONs with a Cysteine-Decorated Copolyester: A Possible Novel Nanoplatform for Enzymatic Release

用半胱氨酸修饰的共聚酯涂覆 SPION:一种可用于酶释放的新型纳米平台

阅读:4
作者:Jeovandro Maria Beltrame, Brena Beatriz Pereira Ribeiro, Camila Guindani, Graziâni Candiotto, Karina Bettega Felipe, Rodrigo Lucas, Alexandre D'Agostini Zottis, Eduardo Isoppo, Claudia Sayer, Pedro Henrique Hermes de Araújo

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have their use approved for the diagnosis/treatment of malignant tumors and can be metabolized by the organism. To prevent embolism caused by these nanoparticles, they need to be coated with biocompatible and non-cytotoxic materials. Here, we synthesized an unsaturated and biocompatible copolyester, poly (globalide-co-ε-caprolactone) (PGlCL), and modified it with the amino acid cysteine (Cys) via a thiol-ene reaction (PGlCLCys). The Cys-modified copolymer presented reduced crystallinity and increased hydrophilicity in comparison to PGlCL, thus being used for the coating of SPIONS (SPION@PGlCLCys). Additionally, cysteine pendant groups at the particle's surface allowed the direct conjugation of (bio)molecules that establish specific interactions with tumor cells (MDA-MB 231). The conjugation of either folic acid (FA) or the anti-cancer drug methotrexate (MTX) was carried out directly on the amine groups of cysteine molecules present in the SPION@PGlCLCys surface (SPION@PGlCLCys_FA and SPION@PGlCLCys_MTX) by carbodiimide-mediated coupling, leading to the formation of amide bonds, with conjugation efficiencies of 62% for FA and 60% for MTX. Then, the release of MTX from the nanoparticle surface was evaluated using a protease at 37 °C in phosphate buffer pH~5.3. It was found that 45% of MTX conjugated to the SPIONs were released after 72 h. Cell viability was measured by MTT assay, and after 72 h, 25% reduction in cell viability of tumor cells was observed. Thus, after a successful conjugation and subsequent triggered release of MTX, we understand that SPION@PGlCLCys has a strong potential to be treated as a model nanoplatform for the development of treatments and diagnosis techniques (or theranostic applications) that can be less aggressive to patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。