Gene Electrotransfer Efficiency in 2D and 3D Cancer Cell Models Using Different Electroporation Protocols: A Comparative Study

2D 和 3D 癌细胞模型中使用不同电穿孔方案的基因电转移效率:比较研究

阅读:4
作者:Alexia de Caro, Elisabeth Bellard, Jelena Kolosnjaj-Tabi, Muriel Golzio, Marie-Pierre Rols

Abstract

Electroporation, a method relying on a pulsed electric field to induce transient cell membrane permeabilization, can be used as a non-viral method to transfer genes in vitro and in vivo. Such transfer holds great promise for cancer treatment, as it can induce or replace missing or non-functioning genes. Yet, while efficient in vitro, gene-electrotherapy remains challenging in tumors. To assess the differences of gene electrotransfer in respect to applied pulses in multi-dimensional (2D, 3D) cellular organizations, we herein compared pulsed electric field protocols applicable to electrochemotherapy and gene electrotherapy and different "High Voltage-Low Voltage" pulses. Our results show that all protocols can result in efficient permeabilization of 2D- and 3D-grown cells. However, their efficiency for gene delivery varies. The gene-electrotherapy protocol is the most efficient in cell suspensions, with a transfection rate of about 50%. Conversely, despite homogenous permeabilization of the entire 3D structure, none of the tested protocols allowed gene delivery beyond the rims of multicellular spheroids. Taken together, our findings highlight the importance of electric field intensity and the occurrence of cell permeabilization, and underline the significance of pulses' duration, impacting plasmids' electrophoretic drag. The latter is sterically hindered in 3D structures and prevents the delivery of genes into spheroids' core.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。