Basic Properties of Adipose-Derived Mesenchymal Stem Cells of Rheumatoid Arthritis and Osteoarthritis Patients

类风湿关节炎和骨关节炎患者的脂肪间充质干细胞的基本特性

阅读:4
作者:Ewa Kuca-Warnawin, Weronika Kurowska, Magdalena Plebańczyk, Anna Wajda, Anna Kornatka, Tomasz Burakowski, Iwona Janicka, Piotr Syrówka, Urszula Skalska

Abstract

Rheumatoid arthritis (RA) and osteoarthritis (OA) are destructive joint diseases, the development of which are associated with the expansion of pathogenic T lymphocytes. Mesenchymal stem cells may be an attractive therapeutic option for patients with RA or OA due to the regenerative and immunomodulatory abilities of these cells. The infrapatellar fat pad (IFP) is a rich and easily available source of mesenchymal stem cells (adipose-derived stem cells, ASCs). However, the phenotypic, potential and immunomodulatory properties of ASCs have not been fully characterised. We aimed to evaluate the phenotype, regenerative potential and effects of IFP-derived ASCs from RA and OA patients on CD4+ T cell proliferation. The MSC phenotype was assessed using flow cytometry. The multipotency of MSCs was evaluated on the basis of their ability to differentiate into adipocytes, chondrocytes and osteoblasts. The immunomodulatory activities of MSCs were examined in co-cultures with sorted CD4+ T cells or peripheral blood mononuclear cells. The concentrations of soluble factors involved in ASC-dependent immunomodulatory activities were assessed in co-culture supernatants using ELISA. We found that ASCs with PPIs from RA and OA patients maintain the ability to differentiate into adipocytes, chondrocytes and osteoblasts. ASCs from RA and OA patients also showed a similar phenotype and comparable abilities to inhibit CD4+ T cell proliferation, which was dependent on the induction of soluble factors The results of our study constitute the basis for further research on the therapeutic potential of ASCs in the treatment of patients with RA and OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。