Activation of Nrf2 inhibits atherosclerosis in ApoE-/- mice through suppressing endothelial cell inflammation and lipid peroxidation

Nrf2 的激活可通过抑制内皮细胞炎症和脂质过氧化来抑制 ApoE-/- 小鼠的动脉粥样硬化

阅读:4
作者:Lei He, Qinghua Chen, Li Wang, Yujie Pu, Juan Huang, Chak Kwong Cheng, Jiang-Yun Luo, Lijing Kang, Xiao Lin, Li Xiang, Liang Fang, Ben He, Yin Xia, Kathy O Lui, Yong Pan, Jie Liu, Cheng-Lin Zhang, Yu Huang

Background

Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, is critically involved in the regulation of oxidative stress and inflammation. However, the role of endothelial Nrf2 in atherogenesis has yet to be defined. In addition, how endothelial Nrf2 is activated and whether Nrf2 can be targeted for the prevention and treatment of atherosclerosis is not explored.

Conclusions

Upon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.

Methods

RNA-sequencing and single-cell RNA sequencing analysis of mouse atherosclerotic aortas were used to identify the differentially expressed genes. In vivo endothelial cell (EC)-specific activation of Nrf2 was achieved by injecting adeno-associated viruses into ApoE-/- mice, while EC-specific knockdown of Nrf2 was generated in Cdh5CreCas9floxed-stopApoE-/- mice.

Results

Endothelial inflammation appeared as early as on day 3 after feeding of a high cholesterol diet (HCD) in ApoE-/- mice, as reflected by mRNA levels, immunostaining and global mRNA profiling, while the immunosignal of the end-product of lipid peroxidation (LPO), 4-hydroxynonenal (4-HNE), started to increase on day 10. TNF-α, 4-HNE, and erastin (LPO inducer), activated Nrf2 signaling in human ECs by increasing the mRNA and protein expression of Nrf2 target genes. Knockdown of endothelial Nrf2 resulted in augmented endothelial inflammation and LPO, and accelerated atherosclerosis in Cdh5CreCas9floxed-stopApoE-/- mice. By contrast, both EC-specific and pharmacological activation of Nrf2 inhibited endothelial inflammation, LPO, and atherogenesis. Conclusions: Upon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。