Antiurolithic activity and biotransformation of galloylquinic acids by Aspergillus alliaceus ATCC10060, Aspergillus brasiliensis ATCC 16404, and Cunninghamella elegans ATCC 10028b

大蒜曲霉 ATCC10060、巴西曲霉 ATCC 16404 和小克宁汉霉 ATCC 10028b 对没食子酰奎宁酸的抗尿石活性和生物转化

阅读:6
作者:Mohamed Abd El-Salam, Niege Furtado, Zejfa Haskic, John Lieske, Jairo Bastos

Abstract

Copaifera lucens n-butanolic fraction (BF) was used as a source of galloylquinic acids, and aerobically incubated with Aspergillus alliaceus ATCC10060, Aspergillus brasiliensis ATCC 16404, and Cunninghamella elegans ATCC 10028b cultures for 60 and 120 h. Out of the three studied filamentous fungi, A. alliaceus ATCC10060 was able to degrade galloylquinic acids into one major metabolite, 3-O-methylgallic acid (M1). The product was identified by 1H-NMR, UPLC-MS/MS and its potential effect on calcium oxalate monohydrate (COM) crystal binding to Madin-Darby canine kidney cells type I surface was studied. Renal cells pretreatment with BF and M1 for 3 h significantly decreased calcium oxalate monohydrate crystal-adherence at 50 μg/mL and 5 μM, respectively. Both M1 and BF significantly reduced surface expression of COM-binding proteins annexin A1 and heat shock protein 90, respectively as evidenced by Western blot analysis of membrane, cytosolic, and whole cell lysate fractions. The compounds also showed antioxidant activities in DPPH assay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。