Prediction of potent shRNAs with a sequential classification algorithm

使用顺序分类算法预测有效的 shRNA

阅读:5
作者:Raphael Pelossof, Lauren Fairchild, Chun-Hao Huang, Christian Widmer, Vipin T Sreedharan, Nishi Sinha, Dan-Yu Lai, Yuanzhe Guan, Prem K Premsrirut, Darjus F Tschaharganeh, Thomas Hoffmann, Vishal Thapar, Qing Xiang, Ralph J Garippa, Gunnar Rätsch, Johannes Zuber, Scott W Lowe, Christina S Leslie, Ch

Abstract

We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。