Identifying Behavioral Phenotypes and Heterogeneity in Heart Valve Surface Endothelium

识别心脏瓣膜表面内皮的行为表型和异质性

阅读:7
作者:Alicia A Blancas, Liezl R Balaoing, Francisca M Acosta, K Jane Grande-Allen

Abstract

Heart valvular endothelial cells (VECs) are distinct from vascular endothelial cells (ECs), but have an uncertain context within the spectrum of known endothelial phenotypes, including lymphatic ECs (LECs). Profiling the phenotypes of the heart valve surface VECs would facilitate identification of a proper seeding population for tissue-engineered valves, as well as elucidate mechanisms of valvular disease. Porcine VECs and porcine aortic ECs (AECs) were isolated from pig hearts and characterized to assess known EC and LEC markers. A transwell migration assay determined their propensity to migrate toward vascular endothelial growth factor, an angiogenic stimulus, over 24 h. Compared to AECs, Flt-1 was expressed on almost double the percentage of VECs, measured as 74 versus 38%. The expression of angiogenic EC markers CXCR4 and DLL4 was >90% on AECs, whereas VECs showed only 35% CXCR4+ and 47% DLL4+. AECs demonstrated greater migration (71.5 ± 11.0 cells per image field) than the VECs with 30.0 ± 15.3 cells per image field (p = 0.032). In total, 30% of VECs were positive for LYVE1+/Prox1+, while these markers were absent in AECs. In conclusion, the population of cells on the surface of heart valves is heterogeneous, consisting largely of nonangiogenic VECs and a subset of LECs. Previous studies have indicated the presence of LECs within the interior of the valves; however, this is the first study to demonstrate their presence on the surface. Identification of this unique endothelial mixture is a step forward in the development of engineered valve replacements as a uniform EC seeding population may not be the best option to maximize transplant success.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。