ROS-mediated downregulation of MYPT1 in smooth muscle cells: a potential mechanism for the aberrant contractility in atherosclerosis

ROS 介导的平滑肌细胞 MYPT1 下调:动脉粥样硬化异常收缩性的潜在机制

阅读:10
作者:Jung-Chien Cheng, Hui-Pin Cheng, I-Ching Tsai, Meei Jyh Jiang

Abstract

Reactive oxygen species (ROS) mediates the aberrant contractility in hypertension. Abnormal contractility occurs in atherosclerotic vessels but changes in proteins that regulate contractility remain poorly understood. Myosin phosphatase (MP) activity, which regulates smooth muscle relaxation, is regulated by the phosphorylation of its regulatory subunit, MP targeting subunit 1 (MYPT1). In the present study, we examined the roles of ROS in MP subunit expression both in cultured human aortic smooth muscle cells (HASMCs) and during atherosclerosis progression in apolipoprotein E-knockout (apoE-KO) mice. Furthermore, the effect of decreased MYPT1 on actin cytoskeleton and cell migration activity was assessed in HASMCs. Short hairpin RNA-mediated knockdown of MYPT1 increased stress fibers and attenuated platelet-derived growth factor-induced cell migration in HASMCs. Superoxide anion-inducing agent LY83583 downregulated MYPT1 mRNA and protein levels, but did not affect the phosphorylation of MYPT1 and catalytic subunit of MP, PP1δ. The LY83583-induced decrease in MYPT1 was abolished by co-treating with superoxide dismutase or by inhibiting NADPH oxidase with diphenyleneiodonium. Treatment of peroxynitrite, but not hydrogen peroxide (H2O2), downregulated MYPT1 protein expression and induced MYPT1 phosphorylation without affecting mRNA levels. Co-treatment with a proteasome inhibitor, MG-132, eliminated peroxynitrite-induced MYPT1 downregulation. In apoE-KO mice, MYPT1 protein, but not mRNA, levels were markedly decreased in 16-week- and 24-week-old mice. Oral estrogen treatment, which was previously shown to decrease aortic ROS levels, upregulated aortic MYPT1 expression. Moreover, reduction in MYPT1 expression correlated with increased aortic sensitivity toward vasoconstrictors. These results suggested that during atherosclerosis progression oxidative stress mediates the downregulation of MYPT1, which may inhibit smooth muscle cell migration and contribute to the aberrant contractility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。