sym-Triazines for directed multitarget modulation of cholinesterases and amyloid-β in Alzheimer's disease

对称三嗪用于阿尔茨海默病中胆碱酯酶和淀粉样蛋白-β的定向多靶点调节

阅读:7
作者:Anthony J Veloso, Devjani Dhar, Ari M Chow, Biao Zhang, Derek W F Tang, Hashwin V S Ganesh, Svetlana Mikhaylichenko, Ian R Brown, Kagan Kerman

Abstract

Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by numerous causative factors of disease progression, termed pathologies. We report here the synthesis of a small library of novel sym-triazine compounds designed for targeted modulation of multiple pathologies related to AD, specifically human acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and Aβ aggregation. Rational targeting of AChE was achieved by the incorporation of acetylcholine substrate analogues into a sym-triazine core in either a mono-, di-, or trisubstituted regime. A subset of these derivatives demonstrated improved activity compared to several commercially available cholinesterase inhibitors. High AChE/BuChE selectivity was characteristic of all derivatives, and AChE steady-state kinetics indicated a mixed-type inhibition mechanism. Further integration of multiple hydrophobic phenyl units allowed for improved β-sheet intercalation into amyloid aggregates. Several highly effective structures exhibited fibril inhibition greater than the previously reported β-sheet-disrupting penta-peptide, iAβ5p, evaluated by thioflavin T fluorescence spectroscopy and transmission electron microscopy. Highly effective sym-triazines were shown to be well tolerated by differentiated human neuronal cells, as demonstrated by the absence of adverse effects on cellular viability at a wide range of concentrations. Parallel targeting of multiple pathologies using sym-triazines is presented here as an effective strategy to address the complex, multifactorial nature of AD progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。