Graphene Oxide Causes Disordered Zonation Due to Differential Intralobular Localization in the Liver

氧化石墨烯因肝脏小叶内定位差异导致分区紊乱

阅读:5
作者:Yakun Wu, Wenya Feng, Rui Liu, Tian Xia, Sijin Liu

Abstract

The liver is the primary organ to sequester nanodrugs, representing a substantial hurdle for drug delivery and raising toxicity concerns. However, the mechanistic details underlying the liver sequestration and effects on the liver are still elusive. The difficulty in studying the liver lies in its complexity, which is structured with stringently organized anatomical units called lobules. Graphene oxide (GO) has attracted attention for its applications in biomedicine, especially as a nanocarrier; however, its sequestration and effects in the liver, the major enrichment and metabolic organ, are less understood. Herein, we unveiled the differential distribution of GO in lobules in the liver, with a higher amount surrounding portal triad zones than the central vein zones. Strikingly, liver zonation patterns also changed, as reflected by changes in vital zonated genes involved in hepatocyte integrity and metabolism, leading to compromised hepatic functions. RNA-Seq and DNA methylation sequencing analyses unraveled that GO-induced changes in liver functional zonation could be ascribed to dysregulation of key signaling pathways governing liver zonation at not only mRNA transcriptions but also DNA methylation imprinting patterns, partially through TET-dependent signaling. Together, this study reveals the differential GO distribution pattern in liver lobules and pinpoints the genetic and epigenetic mechanisms in GO-induced liver zonation alterations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。