Adaptation of the protein translational apparatus during ATDC5 chondrogenic differentiation

ATDC5 软骨发生分化过程中蛋白质翻译装置的适应

阅读:7
作者:Mandy M F Steinbusch, Guus G H van den Akker, Andy Cremers, Adhiambo M A Witlox, Heleen M Staal, Mandy J Peffers, Lodewijk W van Rhijn, Marjolein M J Caron, Tim J M Welting

Conclusion

The expression of a great number of ribosome biogenesis factors is altered during chondrogenic differentiation of ATDC5 cells, which is accompanied by significant changes in cellular translational activity. This elucidation of ribosome biogenesis dynamics in chondrogenic differentiation models enables the further understanding of the role of ribosome biogenesis and activity during chondrocyte cell commitment and their roles in human skeletal development diseases.

Results

As a result of initiation of chondrogenic differentiation (Δt0-t7), 21 snoRNAs were differentially expressed (DE). Hypertrophic differentiation caused DE of 23 snoRNAs (Δt7-t14) and 43 when t0 was compared to t14. DE snoRNAs, amongst others, target nucleotide modifications in the 28S rRNA peptidyl transferase center and the 18S rRNA decoding center. UBF-1, fibrillarin and dyskerin expression increased as function of differentiation and displayed highest fold induction at day 5-6 in differentiation. Ribosomal RNA content per cell was significantly increased at day 7, but not at day 14 in differentiation. Similar dynamics in translational capacity and monosomal ribosome fraction were observed during differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。