Rehmapicrogenin attenuates lipopolysaccharide-induced podocyte injury and kidney dysfunctions by regulating nuclear factor E2-related factor 2/antioxidant response element signalling

地塞米松皂苷通过调节核因子 E2 相关因子 2/抗氧化反应元件信号传导减轻脂多糖诱导的足细胞损伤和肾功能障碍

阅读:5
作者:Xiaohong Ma, Guandong Li, Yufeng Shi, Zhitao Shang

Background

Apoptosis and oxidative stress in kidneys are critical players in acute kidney injury (AKI). Rehmapicrogenin, a monomeric compound extracted from Rehmanniae radix, has been found to possess nitric oxide inhibitory and anti-inflammatory activities. Thus, this study aimed to investigate the roles and mechanisms of rehmapicrogenin in AKI.

Conclusion

Rehmapicrogenin relieves the podocyte injury and renal dysfunctions through activating the Nrf2/ARE pathway to inhibit apoptosis and oxidative stress.

Methods

Lipopolysaccharide (LPS) was used to induce AKI-like conditions. Cell survival conditions were detected by cell counting kit-8 assays and flow cytometry. Several renal function markers including blood urea nitrogen, proteinuria, creatinine, and albumin were measured. Apoptosis and reactive oxygen species (ROS) production were examined by TUNEL and dihydroethidium staining, respectively. Haematoxylin-eosin staining and periodic acid-Schiff staining were conducted to assess histopathological changes. Gene expression was evaluated by western blotting, commercially available kits and immunofluorescence staining.

Results

For in vitro analysis, rehmapicrogenin inhibited the LPS-induced podocyte apoptosis by activating the Nrf2/ARE pathway. For in vivo analysis, rehmapicrogenin improved renal functions in LPS-induced mice. Additionally, rehmapicrogenin suppressed LPS-induced podocyte apoptosis and oxidative stress in kidney tissues. Mechanistically, rehmapicrogenin activated the Nrf2/ARE pathway in LPS-induced mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。