BCG revaccination qualitatively and quantitatively enhances SARS-CoV-2 spike-specific neutralizing antibody and T cell responses induced by the COVISHIELD™ vaccine in SARS-CoV-2 seronegative young Indian adults

BCG 再接种在质量和数量上均增强了 COVISHIELD™ 疫苗在 SARS-CoV-2 血清阴性印度年轻成年人中诱导的 SARS-CoV-2 刺突特异性中和抗体和 T 细胞反应

阅读:4
作者:Srabanti Rakshit, Vasista Adiga, Asma Ahmed, Chaitra Parthiban, Nirutha Chetan Kumar, Pratibha Dwarkanath, Sudarshan Shivalingaiah, Srishti Rao, George D'Souza, Mary Dias, Thomas J A Maguire, Katie Doores, Prokar Dasgupta, Sudhir Babji, Tom H M Ottenhoff, Kenneth D Stuart, Stephen De Rosa, M Juliana

Abstract

This study tested if prior BCG revaccination can further boost immune responses subsequently induced by a widely distributed and otherwise efficacious Oxford/AstraZeneca ChAdOx1nCoV-19 vaccine, referred to as COVISHIELD™, in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth and latent tuberculosis negative, after COVISHIELD™ prime and boost with baseline samples that were collected pre-pandemic and pre-BCG revaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher magnitude of spike-specific Ab and T cell responses, including a greater proportion of high responders; better quality polyfunctional CD4 and CD8 T cells that persisted and a more robust Ab and T cell response to the Delta mutant of SARS-CoV-2 highlighting greater breadth. Mechanistically, BCG adjuvant effects on COVISHIELD™ induced adaptive responses was associated with more robust innate responses to pathogen-associated-molecular-patterns through TNF-α and IL-1β secretion. This study provides first in-depth analysis of immune responses induced by COVISHIELD™ in India and highlights the potential of using a cheap and globally available vaccine, BCG, as an adjuvant to enhance heterologous adaptive immune responses induced by COVIDSHIELD™ and other emerging vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。