Inhibition of neuronal peroxisome proliferator-activated receptor-γ attenuates motor function improvement after spinal cord injury in rats

抑制神经元过氧化物酶体增殖激活受体-γ可减弱大鼠脊髓损伤后运动功能的改善

阅读:5
作者:Youngkyung Kim, Kyu-Won Park, Eunji Lee, Young Wook Yoon

Abstract

Traumatic spinal cord injury (SCI) causes secondary damage in injured and adjacent regions due to temporal deprivation of oxygen and energy supply. Peroxisome proliferator-activated receptor γ (PPARγ) is known to regulate cell survival mechanisms such as hypoxia, oxidative stress, inflammation and energy homeostasis in various tissues. Thus, PPARγ has the potential to show neuroprotective properties. However, the role of endogenous spinal PPARγ in SCI is not well established. In this study, under isoflurane inhalation, a 10-g rod was freely dropped onto the exposed spinal cord after T10 laminectomy using a New York University impactor in male Sprague-Dawley rats. Cellular localization of spinal PPARγ, locomotor function and mRNA levels of various genes including NFκB-targeted pro-inflammatory mediators after intrathecal administration of PPARγ antagonists, agonists or vehicles in SCI rats were then analysed. In both sham and SCI rats, spinal PPARγ was presented in neurons but not in microglia or astrocytes. Inhibition of PPARγ induced IκB activation and increased mRNA levels of pro-inflammatory mediators. It also suppressed recovery of locomotor function with myelin-related gene expression in SCI rats. However, a PPARγ agonist showed no beneficial effects on the locomotor performances of SCI rats, although it further increased the protein expression of PPARγ. In conclusion, endogenous PPARγ has a role in anti-inflammation after SCI. Inhibition of PPARγ might have a negative influence on motor function recovery through accelerated neuroinflammation. Nonetheless, exogenous PPARγ activation does not appear to effectively help with functional improvement after SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。