SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop

SChLAP1 通过与 EZH2 相互作用,通过 DNMT3a 反馈回路介导 5 号染色体多个 miRNA 的启动子甲基化修饰,从而促进前列腺癌的发展

阅读:6
作者:Kai Huang, Yuxin Tang

Abstract

This study aimed to investigate the mechanism of SChLAP1 (second chromosome locus associated with prostate-1) on microRNA expression in prostate cancer. Differential expression of lncRNAs and microRNA prostate cancer cells were predicted by informatics and confirmed by qRT-PCR. SChLAP1-interacting proteins were characterized by RNA pull-down combined with western blotting, which was verified using RIP and qPCR analysis. Then ChIP assay and DNA pull-down were used to validate the binding of DNMT3a and HEK27me3 with miRNA gene promoters. Target genes of miRNAs were bioinformatically predicted and validated by dual-luciferase reporter assays. The tumorigenicity of prostate cancer cells was assessed using the cancer cell line-based xenograft (CDX) model. We found that SChLAP1 expression was significantly elevated in prostate cancer tissues and cell lines, which was negatively correlated with miR-340 expression. SChLAP1 directly binds with EZH2 and repressed multiple miRNA expression on chromosome 5 including the miR-340-3p in prostate cancer cells through recruiting H3K27me3 to mediate promoter methylation modification of miR-340-5p/miR-143-3p/miR-145-5p to suppress gene transcription. Moreover, DNMT3a was one of the common target genes of miR-340-5p/miR-143-3p/miR-145-5p in prostate cancer cells. And SChLAP1/EZH2 could also promote prostate cancer tumor development via the interaction of microRNA-DNMT3a signaling pathways in xenograft nude mice. Altogether, our results suggest that SChLAP1 enhanced the proliferation, migration, and tumorigenicity of prostate cancer cells through interacting with EZH2 to recruit H2K27me3 and mediate promoter methylation modification of miR-340-5p/miR-143-3p/miR-145-5p with a DNMT3a-feedback loop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。