Exercise Rehabilitation and/or Astragaloside Attenuate Amyloid-beta Pathology by Reversing BDNF/TrkB Signaling Deficits and Mitochondrial Dysfunction

运动康复和/或黄芪苷通过逆转 BDNF/TrkB 信号传导缺陷和线粒体功能障碍来减轻淀粉样β蛋白病理

阅读:8
作者:Yu-Lin Wang, Chung-Ching Chio, Shu-Chun Kuo, Chao-Hung Yeh, Jui-Ti Ma, Wen-Pin Liu, Mao-Tsun Lin, Kao-Chang Lin, Ching-Ping Chang

Abstract

We aim to investigate the mechanisms underlying the beneficial effects of exercise rehabilitation (ER) and/or astragaloside (AST) in counteracting amyloid-beta (Aβ) pathology. Aβ oligomers were microinjected into the bilateral ventricles to induce Aβ neuropathology in rats. Neurobehavioral functions were evaluated. Cortical and hippocampal expressions of both BDNF/TrkB and cathepsin D were determined by the western blotting method. The rat primary cultured cortical neurons were incubated with BDNF and/or AST and ANA12 followed by exposure to aggregated Aβ for 24 h. In vivo results showed that ER and/or AST reversed neurobehavioral disorders, downregulation of cortical and hippocampal expression of both BDNF/TrkB and cathepsin D, neural pathology, Aβ accumulation, and altered microglial polarization caused by Aβ. In vitro studies also confirmed that topical application of BDNF and/or AST reversed the Aβ-induced cytotoxicity, apoptosis, mitochondrial distress, and synaptotoxicity and decreased expression of p-TrkB, p-Akt, p-GSK3β, and β-catenin in rat cortical neurons. The beneficial effects of combined ER (or BDNF) and AST therapy in vivo and in vitro were superior to ER (or BDNF) or AST alone. Furthermore, we observed that any gains from ER (or BDNF) and/or AST could be significantly eliminated by ANA-12, a potent BDNF/TrkB antagonist. These results indicate that whereas ER (or BDNF) and/or AST attenuate Aβ pathology by reversing BDNF/TrkB signaling deficits and mitochondrial dysfunction, combining these two potentiates each other's therapeutic effects. In particular, AST can be an alternative therapy to replace ER.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。