Chromatin access regulates the formation of Müller glia-derived progenitor cells in the retina

染色质通路调节视网膜中穆勒胶质细胞衍生祖细胞的形成

阅读:5
作者:Warren A Campbell, Heithem M El-Hodiri, Diego Torres, Evan C Hawthorn, Lisa E Kelly, Leo Volkov, David Akanonu, Andy J Fischer

Abstract

Chromatin access and epigenetic control over gene expression play important roles in regulating developmental processes. However, little is known about how chromatin access and epigenetic gene silencing influence mature glial cells and retinal regeneration. Herein, we investigate the expression and functions of S-adenosylhomocysteine hydrolase (SAHH; AHCY) and histone methyltransferases (HMTs) during the formation of Müller glia (MG)-derived progenitor cells (MGPCs) in the chick and mouse retinas. In chick, AHCY, AHCYL1 and AHCYL2, and many different HMTs are dynamically expressed by MG and MGPCs in damaged retinas. Inhibition of SAHH reduced levels of H3K27me3 and potently blocks the formation of proliferating MGPCs. By using a combination of single cell RNA-seq and single cell ATAC-seq, we find significant changes in gene expression and chromatin access in MG with SAHH inhibition and NMDA-treatment; many of these genes are associated with glial and neuronal differentiation. A strong correlation across gene expression, chromatin access, and transcription factor motif access in MG was observed for transcription factors known to convey glial identity and promote retinal development. By comparison, in the mouse retina, inhibition of SAHH has no influence on the differentiation of neuron-like cells from Ascl1-overexpressing MG. We conclude that in the chick the activity of SAHH and HMTs are required for the reprogramming of MG into MGPCs by regulating chromatin access to transcription factors associated with glial differentiation and retinal development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。