Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells

Rab35 是 Wnt5a/Dvl2 诱导的 MCF-7 乳腺癌细胞中 Rac1 激活和细胞迁移所必需的。

阅读:5
作者:Yichao Zhu, Tian Shen, Jiaojing Liu, Jianchao Zheng, Yujie Zhang, Rui Xu, Chongqi Sun, Jun Du, Yongchang Chen, Luo Gu

Abstract

The small GTPases regulate many major biological processes in both tumorigenesis and tumor progression such as cell survival, actin cytoskeleton organization, cell polarity and movement. Wnt5a, a non-canonical Wnt family member, is implicated in the activation of small GTPases in breast cancer. We previously demonstrated that Wnt5a signaling stimulates the migration of breast cancer cells MDA-MB-231 via activating RhoA. However, we found here that RhoA activation was not enhanced by Wnt5a in breast cancer cells MCF-7. The conflicting results prompted us to further probe novel small GTPases in response to Wnt5a and investigate the mechanisms whereby cell migration is regulated. We showed here that Wnt5a dose dependently activated Dvl2, Rab35 and Rac1 and subsequently promoted the migration of MCF-7 cells, which was, however, abolished by knocking down Wnt5a expression via small interfering RNA (siRNA) transfection. Dvl2 siRNA significantly decreased background and Wnt5a-induced Rab35/Rac1 activation and, consequently, cell migration. Rab35 short hairpin RNA (shRNA) remarkably inhibited background and Wnt5a-induced Rac1 activation and cell migration. Additionally, blockade of Rac1 activation with Rac1 siRNA suppressed background and Wnt5a-induced cell migration. Co-immunoprecipitation and immunofluorescence assays showed that Dvl2 bound to Rab35 in mammalian cells. Taken together, we demonstrated that Wnt5a promotes breast cancer cell migration via the Dvl2/Rab35/Rac1 signaling pathway. These findings implicate Wnt5a signaling in regulating small GTPases, which could be targeted for manipulating breast cancer cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。