Microglial Phagocytosis/Cell Health High-Content Assay

小胶质细胞吞噬作用/细胞健康高内涵测定

阅读:8
作者:Emily R Mason, Disha M Soni, Shaoyou Chu

Abstract

We report a microglial phagocytosis/cell health high-content assay that has been used to test small molecule chemical probes and support our drug discovery projects targeting microglia for Alzheimer's disease therapy. The assay measures phagocytosis and cell health (cell count and nuclear intensity) simultaneously in 384-well plates processed with an automatic liquid handler. The mix-and-read live cell imaging assay is highly reproducible with capacity to meet drug discovery research needs. Assay procedures take 4 days including plating cells, treating cells, adding pHrodo-myelin/membrane debris to cells for phagocytosis, staining cell nuclei before performing high-content imaging, and analysis. Three selected parameters are measured from cells: 1) mean total fluorescence intensity per cell of pHrodo-myelin/membrane debris in phagocytosis vesicles to quantify phagocytosis; 2) cell counts per well (measuring compound effects on proliferation and cell death); and 3) average nuclear intensity (measuring compound induced apoptosis). The assay has been used on HMC3 cells (an immortalized human microglial cell line), BV2 cells (an immortalized mouse microglial cell line), and primary microglia isolated from mouse brains. Simultaneous measurements of phagocytosis and cell health allow for the distinction of compound effects on regulation of phagocytosis from cellular stress/toxicity related changes, a distinguishing feature of the assay. The combination of cell counts and nuclear intensity as indicators of cell health is also an effective way to measure cell stress and compound cytotoxicity, which may have broad applications as simultaneous profiling measurements for other phenotypic assays. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Microglial phagocytosis/cell health high-content assay protocol Support Protocol: Procedures to isolate myelin/membrane debris from mouse brain and label with pHrodo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。