Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk

蛋白质组学分析揭示 2 型糖尿病风险的生物标志物和途径

阅读:4
作者:Debby Ngo, Mark D Benson, Jonathan Z Long, Zsu-Zsu Chen, Ruiqi Wang, Anjali K Nath, Michelle J Keyes, Dongxiao Shen, Sumita Sinha, Eric Kuhn, Jordan E Morningstar, Xu Shi, Bennet D Peterson, Christopher Chan, Daniel H Katz, Usman A Tahir, Laurie A Farrell, Olle Melander, Jonathan D Mosley, Steven A

Abstract

Recent advances in proteomic technologies have made high-throughput profiling of low-abundance proteins in large epidemiological cohorts increasingly feasible. We investigated whether aptamer-based proteomic profiling could identify biomarkers associated with future development of type 2 diabetes (T2DM) beyond known risk factors. We identified dozens of markers with highly significant associations with future T2DM across 2 large longitudinal cohorts (n = 2839) followed for up to 16 years. We leveraged proteomic, metabolomic, genetic, and clinical data from humans to nominate 1 specific candidate to test for potential causal relationships in model systems. Our studies identified functional effects of aminoacylase 1 (ACY1), a top protein association with future T2DM risk, on amino acid metabolism and insulin homeostasis in vitro and in vivo. Furthermore, a loss-of-function variant associated with circulating levels of the biomarker WAP, Kazal, immunoglobulin, Kunitz, and NTR domain-containing protein 2 (WFIKKN2) was, in turn, associated with fasting glucose, hemoglobin A1c, and HOMA-IR measurements in humans. In addition to identifying potentially novel disease markers and pathways in T2DM, we provide publicly available data to be leveraged for insights about gene function and disease pathogenesis in the context of human metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。