Deletion of the serine protease CAP2/Tmprss4 leads to dysregulated renal water handling upon dietary potassium depletion

丝氨酸蛋白酶 CAP2/Tmprss4 的缺失会导致饮食中钾缺乏时肾脏水处理失调

阅读:5
作者:Anna Keppner, Darko Maric, Chloé Sergi, Camille Ansermet, Damien De Bellis, Denise V Kratschmar, Jérémie Canonica, Petra Klusonova, Robert A Fenton, Alex Odermatt, Gilles Crambert, David Hoogewijs, Edith Hummler

Abstract

The kidney needs to adapt daily to variable dietary K+ contents via various mechanisms including diuretic, acid-base and hormonal changes that are still not fully understood. In this study, we demonstrate that following a K+-deficient diet in wildtype mice, the serine protease CAP2/Tmprss4 is upregulated in connecting tubule and cortical collecting duct and also localizes to the medulla and transitional epithelium of the papilla and minor calyx. Male CAP2/Tmprss4 knockout mice display altered water handling and urine osmolality, enhanced vasopressin response leading to upregulated adenylate cyclase 6 expression and cAMP overproduction, and subsequently greater aquaporin 2 (AQP2) and Na+-K+-2Cl- cotransporter 2 (NKCC2) expression following K+-deficient diet. Urinary acidification coincides with significantly increased H+,K+-ATPase type 2 (HKA2) mRNA and protein expression, and decreased calcium and phosphate excretion. This is accompanied by increased glucocorticoid receptor (GR) protein levels and reduced 11β-hydroxysteroid dehydrogenase 2 activity in knockout mice. Strikingly, genetic nephron-specific deletion of GR leads to the mirrored phenotype of CAP2/Tmprss4 knockouts, including increased water intake and urine output, urinary alkalinisation, downregulation of HKA2, AQP2 and NKCC2. Collectively, our data unveil a novel role of the serine protease CAP2/Tmprss4 and GR on renal water handling upon dietary K+ depletion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。