Drug addiction unveils a repressive methylation ceiling in EZH2-mutant lymphoma

药物成瘾揭示了 EZH2 突变淋巴瘤中抑制性甲基化上限

阅读:5
作者:Hui Si Kwok #, Allyson M Freedy #, Allison P Siegenfeld, Julia W Morriss, Amanda L Waterbury, Stephen M Kissler, Brian B Liau

Abstract

Drug addiction, a phenomenon where cancer cells paradoxically depend on continuous drug treatment for survival, has uncovered cell signaling mechanisms and cancer codependencies. Here we discover mutations that confer drug addiction to inhibitors of the transcriptional repressor polycomb repressive complex 2 (PRC2) in diffuse large B-cell lymphoma. Drug addiction is mediated by hypermorphic mutations in the CXC domain of the catalytic subunit EZH2, which maintain H3K27me3 levels even in the presence of PRC2 inhibitors. Discontinuation of inhibitor treatment leads to overspreading of H3K27me3, surpassing a repressive methylation ceiling compatible with lymphoma cell survival. Exploiting this vulnerability, we show that inhibition of SETD2 similarly induces the spread of H3K27me3 and blocks lymphoma growth. Collectively, our findings demonstrate that constraints on chromatin landscapes can yield biphasic dependencies in epigenetic signaling in cancer cells. More broadly, we highlight how approaches to identify drug addiction mutations can be leveraged to discover cancer vulnerabilities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。