CRISPR/Cas9-Targeted Deletion of Polyglutamine in Spinocerebellar Ataxia Type 3-Derived Induced Pluripotent Stem Cells

利用 CRISPR/Cas9 靶向删除脊髓小脑共济失调 3 型衍生的诱导性多能干细胞中的多聚谷氨酰胺

阅读:5
作者:Shuming Ouyang, Yingjun Xie, Zeyu Xiong, Yi Yang, Yexing Xian, Zhanhui Ou, Bing Song, Yuchang Chen, Yuhuan Xie, Haoxian Li, Xiaofang Sun

Abstract

Spinocerebellar ataxia type 3 (SCA3) is caused by an abnormal expansion of the cytosine-adenine-guanine (CAG) triplet in ATXN3, which translates into a polyglutamine (polyQ) tract within ataxin-3 (ATXN3) protein. Although the pathogenic mechanisms remain unclear, it is well established that expression of mutant forms of ATXN3 carrying an expanded polyQ domain are involved in SCA3 pathogenesis, and several strategies to suppress mutant ATXN3 have shown promising potential for SCA3 treatment. In this study, we described successful clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of the expanded polyQ-encoding region of ATXN3 in induced pluripotent stem cells (iPSCs) derived from a SCA3 patient, and these patient-specific iPSCs retained pluripotency and neural differentiation following expanded polyQ deletion. Furthermore, the ubiquitin-binding capacity of ATXN3 was retained in the neural cells differentiated from the corrected iPSCs. For the first time, this work provides preliminary data for gene editing by CRISPR/Cas9 in SCA3, and demonstrates the feasibility of using a single-guide RNA pair to delete the expanded polyQ-encoding region of ATXN3, suggesting the potential efficacy of this method for future therapeutic application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。