Gram-Negative Bacteria and Lipopolysaccharides as Risk Factors for the Occurrence of Diabetic Foot

革兰氏阴性菌和脂多糖是糖尿病足发生的危险因素

阅读:6
作者:Shili Zhang, Shuxian Li, Jiali Huang, Xinyi Ding, Yan Qiu, Xiangrong Luo, Jianfu Meng, YanJun Hu, Hao Zhou, Hongying Fan, Ying Cao, Fang Gao, Yaoming Xue, Mengchen Zou

Conclusions

The skin microbiome in patients with diabetes undergoes dynamic changes at taxonomic and functional levels with the progression of diabetic complications. The increase in gram-negative bacteria on the skin surface through LPS-TLR4 signal transduction could induce inflammatory response in early diabetic skin lesions.

Methods

We enrolled 90 consecutive subjects who were divided into 5 groups based on DF risk stratification: very low, low, moderate, and high risk for ulcers and a healthy control group. Integrated analysis of 16S ribosomal RNA and metagenomic sequencing of cotton swab samples was applied to identify the foot skin microbiome composition and functions in subjects. Then a mouse model of microbiota transplantation was used to evaluate the effects of the skin microbiome on diabetic skin lesions.

Objective

To investigate the dynamic composition and function of the foot skin microbiome with risk stratification for DF and assess whether dysbiosis of the skin microbiome induces diabetic skin lesions.

Results

The results demonstrated that, with the progression of diabetic complications, the proportion of gram-negative bacteria in plantar skin increased. At the species level, metagenome sequencing analyses showed Moraxella osloensis to be a representative core strain in the high-risk group. The major microbial metabolites affecting diabetic skin lesions were increased amino acid metabolites, and antibiotic resistance genes in microorganisms were abundant. Skin microbiota from high-risk patients induced more inflammatory cell infiltration, similar to the lipopolysaccharide (LPS)-stimulated response, which was inhibited by Toll-like receptor 4 (TLR4) antagonists. Conclusions: The skin microbiome in patients with diabetes undergoes dynamic changes at taxonomic and functional levels with the progression of diabetic complications. The increase in gram-negative bacteria on the skin surface through LPS-TLR4 signal transduction could induce inflammatory response in early diabetic skin lesions.

Trial registration

ClinicalTrials.gov NCT04916457.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。