Evolution of ancient functions in the vertebrate insulin-like growth factor system uncovered by study of duplicated salmonid fish genomes

通过对鲑鱼基因组重复的研究揭示了脊椎动物胰岛素样生长因子系统的古老功能的进化

阅读:6
作者:Daniel J Macqueen, Daniel Garcia de la Serrana, Ian A Johnston

Abstract

Whole-genome duplication (WGD) was experienced twice by the vertebrate ancestor (2 rounds; 2R), again by the teleost fish ancestor (3R) and most recently in certain teleost lineages (4R). Consequently, vertebrate gene families are often expanded in 3R and 4R genomes. Arguably, many types of "functional divergence" present across 2R gene families will exceed that between 3R/4R paralogs of genes comprising 2R families. Accordingly, 4R offers a form of replication of 2R. Examining whether this concept has implications for molecular evolutionary research, we studied insulin-like growth factor (IGF) binding proteins (IGFBPs), whose six 2R family members carry IGF hormones and regulate interactions between IGFs and IGF1-receptors (IGF1Rs). Using phylogenomic approaches, we resolved the complete IGFBP repertoire of 4R-derived salmonid fishes (19 genes; 13 more than human) and established evolutionary relationships/nomenclature with respect to WGDs. Traits central to IGFBP action were determined for all genes, including atomic interactions in IGFBP-IGF1/IGF2 complexes regulating IGF-IGF1R binding. Using statistical methods, we demonstrate that attributes of these protein interfaces are overwhelming a product of 2R IGFBP family membership, explain 49-68% of variation in IGFBP mRNA concentration in several different tissues, and strongly predict the strength and direction of IGFBP transcriptional regulation under differing nutritional states. The results support a model where vertebrate IGFBP family members evolved divergent structural attributes to provide distinct competition for IGFs with IGF1Rs, predisposing different functions in the regulation of IGF signaling. Evolution of gene expression then acted to ensure the appropriate physiological production of IGFBPs according to their structural specializations, leading to optimal IGF-signaling according to nutritional-status and the endocrine/local mode of action. This study demonstrates that relatively recent gene family expansion can facilitate inference of functional evolution within ancient genetic systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。