Conclusions
CAFF treatment triggered brain and ovarian derangements partially antagonized with concurrent AGO or QUET administration but with no overt affection of estrus cycle progression. Estrogenic, adenosinergic, and melatonergic signaling and brain-ovarian crosstalk may explain these effects.
Methods
Adult female rats were administered AGO (10 mg/kg), QUET (10 mg/kg), CAFF, AGO + CAFF, or QUET + CAFF, once daily for 8 weeks. EEG, estrous cycle progression, and microstructure of the brain and ovaries were examined. Brain and ovarian 17β-estradiol (E2), antimullerian hormone (AMH), estrogen receptor alpha (E2Rα), adenosine receptor 2A (A2AR), and melatonin receptor 2 (MT2R) were assessed.
Results
CAFF, alone or combined with AGO or QUET, reduced the maximum EEG peak, which was positively linked to ovarian E2Rα, negatively correlated to cortical neurodegeneration and ovarian MT2R, and associated with cystic ovaries. A large corpus luteum emerged with AGO + CAFF and QUET + CAFF, antagonizing the CAFF-mediated increased ovarian A2AR and reduced cortical E2Rα. AGO + CAFF provoked TTP delay and increased ovarian AMH, while QUET + CAFF slowed source EEG frequency to δ range and increased brain E2. Conclusions: CAFF treatment triggered brain and ovarian derangements partially antagonized with concurrent AGO or QUET administration but with no overt affection of estrus cycle progression. Estrogenic, adenosinergic, and melatonergic signaling and brain-ovarian crosstalk may explain these effects.
