Activation of an Otherwise Silent Xylose Metabolic Pathway in Shewanella oneidensis

激活 Shewanella oneidensis 中原本沉默的木糖代谢途径

阅读:6
作者:Ramanan Sekar, Hyun Dong Shin, Thomas J DiChristina

Abstract

Shewanella oneidensis is unable to metabolize the sugar xylose as a carbon and energy source. In the present study, an otherwise silent xylose catabolic pathway was activated in S. oneidensis by following an adaptive evolution strategy. Genome-wide scans indicated that the S. oneidensis genome encoded two proteins similar to the xylose oxido-reductase pathway enzymes xylose reductase (SO_0900) and xylulokinase (SO_4230), and purified SO_0900 and SO_4230 displayed xylose reductase and xylulokinase activities, respectively. The S. oneidensis genome was missing, however, an Escherichia coli XylE-like xylose transporter. After 12 monthly transfers in minimal growth medium containing successively higher xylose concentrations, an S. oneidensis mutant (termed strain XM1) was isolated for the acquired ability to grow aerobically on xylose as a carbon and energy source. Whole-genome sequencing indicated that strain XM1 contained a mutation in an unknown membrane protein (SO_1396) resulting in a glutamine-to-histidine conversion at amino acid position 207. Homology modeling demonstrated that the Q207H mutation in SO_1396 was located at the homologous xylose docking site in XylE. The expansion of the S. oneidensis metabolic repertoire to xylose expands the electron donors whose oxidation may be coupled to the myriad of terminal electron-accepting processes catalyzed by S. oneidensis Since xylose is a lignocellulose degradation product, this study expands the potential substrates to include lignocellulosic biomass. Importance: The activation of an otherwise silent xylose metabolic system in Shewanella oneidensis is a powerful example of how accidental mutations allow microorganisms to adaptively evolve. The expansion of the S. oneidensis metabolic repertoire to xylose expands the electron donors whose oxidation may be coupled to the myriad of terminal electron-accepting processes catalyzed by S. oneidensis Since xylose is a lignocellulose degradation product, this study expands the potential substrates to include lignocellulosic biomass.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。