Over-Expression of IS Aba1-Linked Intrinsic and Exogenously Acquired OXA Type Carbapenem-Hydrolyzing-Class D-ß-Lactamase-Encoding Genes Is Key Mechanism Underlying Carbapenem Resistance in Acinetobacter baumannii

IS Aba1 关联的内在和外源获得性 OXA 型卡巴培南水解类 D-β-内酰胺酶编码基因的过度表达是鲍曼不动杆菌对卡巴培南耐药性的关键机制

阅读:4
作者:Marcus Ho-Yin Wong, Bill Kwan-Wai Chan, Edward Wai-Chi Chan, Sheng Chen

Abstract

Acinetobacter baumannii is an important clinical pathogen which often causes fatal infections among seriously ill patients. Treatment options for managing infections caused by this organism have become limited as a result of emergence of carbapenem resistant strains. In the current study, whole genome sequencing, gene expression studies and enzyme kinetics analyses were performed to investigate the underlying carbapenem resistance mechanisms in fourteen clinical A. baumannii strains isolated from two hospitals, one each in Hong Kong and Henan Province, People's Republic of China. A large majority of the A. baumannii strains (11/14) were found to belong to the International Clone II (IC-II), among which six were ST208. Twelve of these strains were carbapenem resistant and found to either harbor bla OXA- 23/bla OXA- 72, or exhibit over-expression of the bla OXA- 51 gene upon ISAba1 insertion. Enzymatic assay confirmed that the OXA variants, including those of bla OXA - 51, exhibited strong carbapenem-degrading activities. In terms of other intrinsic mechanisms, a weak correlation was observed between reduced production of outer membrane porin CarO/expression resistance-nodulation-division (RND) efflux AdeB and phenotypic resistance. This finding implied that over-production of carbapenem-hydrolyzing-class D-ß-lactamases (CHDLs), including the intrinsic bla OXA- 51 gene and the acquired bla OXA- 23 and bla OXA- 24 elements, is the key mechanism of carbapenem resistance in A. baumannii. This view is confirmed by testing the effect of NaCl, a known bla OXA inhibitor, which was found to cause reduction in carbapenem MIC by twofolds to eightfolds, suggesting that inhibiting OXA type carbapenemases represents the most effective strategy to control phenotypic carbapenem resistance in A. baumannii.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。