Dynamic coupling between conformations and nucleotide states in DNA gyrase

DNA旋转酶中构象和核苷酸状态之间的动态耦合

阅读:6
作者:Aakash Basu, Matthew Hobson, Paul Lebel, Louis E Fernandes, Elsa M Tretter, James M Berger, Zev Bryant

Abstract

Gyrase is an essential bacterial molecular motor that supercoils DNA using a conformational cycle in which chiral wrapping of > 100 base pairs confers directionality on topoisomerization. To understand the mechanism of this nucleoprotein machine, global structural transitions must be mapped onto the nucleotide cycle of ATP binding, hydrolysis and product release. Here we investigate coupling mechanisms using single-molecule tracking of DNA rotation and contraction during Escherichia coli gyrase activity under varying nucleotide conditions. We find that ADP must be exchanged for ATP to drive the rate-limiting remodeling transition that generates the chiral wrap. ATP hydrolysis accelerates subsequent duplex strand passage and is required for resetting the enzyme and recapturing transiently released DNA. Our measurements suggest how gyrase coordinates DNA rearrangements with the dynamics of its ATP-driven protein gate, how the motor minimizes futile cycles of ATP hydrolysis and how gyrase may respond to changing cellular energy levels to link gene expression with metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。