Collagen Hydrogel Containing Polyethylenimine-Gold Nanoparticles for Drug Release and Enhanced Beating Properties of Engineered Cardiac Tissues

含聚乙烯亚胺-金纳米粒子的胶原水凝胶用于药物释放和增强工程心脏组织的跳动性能

阅读:5
作者:Kaveh Roshanbinfar, Maria Kolesnik-Gray, Miriam Angeloni, Stefan Schruefer, Maren Fiedler, Dirk W Schubert, Fulvia Ferrazzi, Vojislav Krstic, Felix B Engel

Abstract

Cardiac tissue engineering is a promising strategy to prevent heart failure. However, several issues remain unsolved, including efficient electrical coupling and incorporating factors to enhance tissue maturation and vascularization. Herein, a biohybrid hydrogel that enhances beating properties of engineered cardiac tissues and allows drug release concurrently is developed. Gold nanoparticles (AuNPs) with different sizes (18-241 nm) and surface charges (33.9-55.4 mV) are synthesized by reducing gold (III) chloride trihydrate using branched polyethyleneimine (bPEI). These nanoparticles increase gel stiffness from ≈91 to ≈146 kPa, enhance electrical conductivity of collagen hydrogels from ≈40 to 49-68 mS cm-1 , and allow slow and steady release of loaded drugs. Engineered cardiac tissues based on bPEI-AuNP-collagen hydrogels and either primary or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes show enhanced beating properties. hiPSC-derived cardiomyocytes exhibit more aligned and wider sarcomeres in bPEI-AuNP-collagen hydrogels compared to collagen hydrogels. Furthermore, the presence of bPEI-AuNPs result in advanced electrical coupling evidenced by synchronous and homogenous calcium flux throughout the tissue. RNA-seq analyses are in agreement with these observations. Collectively, this data demonstrate the potential of bPEI-AuNP-collagen hydrogels to improve tissue engineering approaches to prevent heart failure and possibly treat diseases of other electrically sensitive tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。