Temporal manipulation of KCC3 expression in juvenile or adult mice suggests irreversible developmental deficit in hereditary motor sensory neuropathy with agenesis of the corpus callosum

幼年小鼠或成年小鼠中 KCC3 表达的时间调控表明,遗传性运动感觉神经病伴胼胝体发育不全存在不可逆的发育缺陷

阅读:5
作者:Bianca Flores, Eric Delpire

Abstract

Hereditary motor sensory neuropathy (HMSN/ACC) with agenesis of the corpus callosum (ACC) has been documented in the French-derived populations of Charlevoix and Saguenay/Lac St. Jean in Quebec, Canada, as well as a few sporadic families throughout the world. HMSN/ACC occurs because of loss-of-function mutations in the potassium-chloride cotransporter 3 (KCC3). In HMSN/ACC, motor deficits occur early in infancy with rapid and continual deterioration of motor and sensory fibers into juvenile and adulthood. Genetic work in mice has demonstrated that the disease is caused by loss of KCC3 function in neurons and particularly parvalbumin (PV)-expressing neurons. Currently, there are no treatments or cures for HMSN/ACC other than pain management. As genetic counseling in Quebec has increased as a preventative strategy, most individuals with HSMN/ACC are now adults. The onset of the disease is unknown. In particular, it is unknown if the disease starts early during development and whether it can be reversed by restoring KCC3 function. In this study, we used two separate mouse models that when combined to the PV-CreERT2 tamoxifen-inducible system allowed us to 1) disrupt KCC3 expression in adulthood or juvenile periods; and 2) reintroduce KCC3 expression in mice that first develop with a nonfunctional cotransporter. We show that disrupting or reintroducing KCC3 in the adult mouse has no effect on locomotor behavior, indicating that expression of KCC3 is critical during embryonic development and/or the perinatal period and that once the disease has started, reexpressing a functional cotransporter fails to change the course of HMSN/ACC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。