Synthesis and antimicrobial evaluation of two peptide LyeTx I derivatives modified with the chelating agent HYNIC for radiolabeling with technetium-99m

用螯合剂 HYNIC 修饰的两种肽 LyeTx I 衍生物的合成和抗菌评价,用于锝-99m 放射性标记

阅读:6
作者:Leonardo Lima Fuscaldi, Daniel Moreira Dos Santos, Natália Gabriela Silva Pinheiro, Raquel Silva Araújo, André Luís Branco de Barros, Jarbas Magalhães Resende, Simone Odília Antunes Fernandes, Maria Elena de Lima, Valbert Nascimento Cardoso

Background

Current diagnostic

Conclusions

The binding of HYNIC to the N-terminal portion of LyeTx I seems to affect its activity against bacteria. Nevertheless, the radiolabeling of the C-terminal derivative, LyeTx I-K-HYNIC, must be better investigated to optimize the radiolabeled compound, in order to use it as a specific imaging agent to distinguish septic and aseptic inflammation.

Methods

Two LyeTx I derivatives, HYNIC-LyeTx I (N-terminal modification) and LyeTx I-K-HYNIC (C-terminal modification), were synthesized by Fmoc strategy and purified by RP-HPLC. The purified products were assessed by RP-HPLC and MALDI-ToF-MS analysis. Microbiological assays were performed against S. aureus (ATCC® 6538) and E. coli (ATCC® 10536) in liquid medium to calculate the MIC. The radiolabeling procedure of LyeTx I-K-HYNIC with (99m)Tc was performed in the presence of co-ligands (tricine and EDDA) and reducing agent (SnCl2 (.) 2H2O), and standardized taking into account the amount of peptide, reducing agent, pH and heating. Radiochemical purity analysis was performed by thin-layer chromatography on silica gel strips and the radiolabeled compound was assessed by RP-HPLC and radioactivity measurement of the collected fractions. Data were analyzed by ANOVA, followed by Tukey test (p-values < 0.05).

Results

Both LyeTx I derivatives were suitably synthesized and purified, as shown by RP-HPLC and MALDI-ToF-MS analysis. The microbiological test showed that HYNIC-LyeTx I (N-terminal modification) did not inhibit bacterial growth, whereas LyeTx I-K-HYNIC (C-terminal modification) showed a MIC of 5.05 μmol(.)L(-1) (S. aureus) and 10.10 μmol(.)L(-1) (E. coli). Thus, only the latter was radiolabeled with (99m)Tc. The radiochemical purity analysis of LyeTx I-K-HYNIC-(99m)Tc showed that the optimal radiolabeling conditions (10 μg of LyeTx I-K-HYNIC; 250 μg of SnCl2 (.) 2H2O; pH = 7; heating for 15 min) yielded a radiochemical purity of 87 ± 1 % (n = 3). However, RP-HPLC data suggested (99m)Tc transchelation from LyeTx I-K-HYNIC to the co-ligands (tricine and EDDA). Conclusions: The binding of HYNIC to the N-terminal portion of LyeTx I seems to affect its activity against bacteria. Nevertheless, the radiolabeling of the C-terminal derivative, LyeTx I-K-HYNIC, must be better investigated to optimize the radiolabeled compound, in order to use it as a specific imaging agent to distinguish septic and aseptic inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。