Calmodulin antagonist enhances DR5-mediated apoptotic signaling in TRA-8 resistant triple negative breast cancer cells

钙调蛋白拮抗剂增强 TRA-8 耐药三阴性乳腺癌细胞中 DR5 介导的凋亡信号传导

阅读:5
作者:Romone M Fancy, Harrison Kim, Tiara Napier, Donald J Buchsbaum, Kurt R Zinn, Yuhua Song

Abstract

Patients with triple negative breast cancer (TNBC) have no successful "targeted" treatment modality, which represents a priority for novel therapy strategies. Upregulated death receptor 5 (DR5) expression levels in breast cancer cells compared to normal cells enable TRA-8, a DR5 specific agonistic antibody, to specifically target malignant cells for apoptosis without inducing normal hepatocyte apoptosis. Drug resistance is a common obstacle in TRAIL-based therapy for TNBC. Calmodulin (CaM) is overexpressed in breast cancer. In this study, we characterized the novel function of CaM antagonist in enhancing TRA-8 induced cytotoxicity in TRA-8 resistant TNBC cells and its underlying molecular mechanisms. Results demonstrated that CaM antagonist(s) enhanced TRA-8 induced cytotoxicity in a concentration and time-dependent manner for TRA-8 resistant TNBC cells. CaM directly bound to DR5 in a Ca2+ dependent manner, and CaM siRNA promoted DR5 recruitment of FADD and caspase-8 for DISC formation and TRA-8 activated caspase cleavage for apoptosis in TRA-8 resistant TNBC cells. CaM antagonist, trifluoperazine, enhanced TRA-8 activated DR5 oligomerization, DR5-mediated DISC formation, and TRA-8 activated caspase cleavage for apoptosis, and decreased anti-apoptotic pERK, pAKT, XIAP, and cIAP-1 expression in TRA-8 resistant TNBC cells. These results suggest that CaM could be a key regulator to mediate DR5-mediated apoptotic signaling, and suggests a potential strategy for using CaM antagonists to overcome drug resistance of TRAIL-based therapy for TRA-8 resistant TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。