Human Bone Marrow Subpopulations Sustain Human Islet Function and Viability In vitro

人类骨髓亚群体外维持人类胰岛功能和活力

阅读:5
作者:Lu Guang Luo, Fang Xiong, Philippe Ravassard, John Zq Luo

Aims

Allogeneic bone marrow (BM) has been shown to support human islet survival and function in long-term culture by initiating human islet vascularization and β-cell regeneration. Various BM subpopulations may play different roles in human islet functions and survival. In this paper we investigated the effects of BM and its subpopulations, endothelial progenitor cells (E) and mesenchymal (M) cells on human islet's β-cell function and regeneration. Study design: Isolation and identification of subpopulations from human bone marrow and culture with allogeneic human islet to investigate effects of different cell population on human islet function and regeneration. Place and duration of study: Department of Medicine, Center for Stem Cell & Diabetes Research, RWMC, Providence, RI, USA, between 2010 - 2014. Methodology: Human islets were distributed from Integrated Islet Distribution Program (IIDP) and human bone marrow (BM) was harvested by Bone marrow transplantation center at Roger Williams Hospital. BM subpopulation was identified cell surface markers through Fluorescence-activated cell sorting, applied in flow cytometry (FACS), islet function was evaluated by human ELISA kit and β cell regeneration was evaluated by three

Conclusion

These results suggest that BM and its derived M and E cells enable to support human islet β-cell function. However, only BM can sustain the capability of β-cell self regeneration through initiating β-cell transcriptional factors but not individual E and M cells suggesting pure E and M cells less supportive for islet long-term survival in vitro.

Results

Four different BM and seven different islet donates contributed human tissues. We observed islet β-cell having self regeneration capability in short term culture (3∼5 days) using a Cre-Loxp cell tracing. BM and its subtype E, M have similar benefits on β cell function during co-culture with human islet comparison to islet only. However, only whole BM enables to sustain the capability of islet β-cell self regeneration resulting in increasing β cell population while single E and M individual do not significantly affect on that. Mechanism approach to explore β-cell self regeneration by evaluating transcription factor expressions, we found that BM significantly increases the activations of β-cell regeneration relative transcription factors, the LIM homeodomain protein (Isl1), homologue to zebrafish somite MAF1 (MAFa), the NK-homeodomain factor 6.1 (NKX6.1), the paired box family factors 6 (PAX6), insulin promoter factor 1 (IPF1) and kinesin family member 4A (KIF4a).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。