RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome

RIP 激酶 1 依赖性内皮细胞坏死凋亡是全身炎症反应综合征的基础

阅读:4
作者:Matija Zelic, Justine E Roderick, Joanne A O'Donnell, Jesse Lehman, Sung Eun Lim, Harish P Janardhan, Chinmay M Trivedi, Manolis Pasparakis, Michelle A Kelliher

Abstract

Receptor interacting protein kinase 1 (RIPK1) has important kinase-dependent and kinase-independent scaffolding functions that activate or prevent apoptosis or necroptosis in a cell context-dependent manner. The kinase activity of RIPK1 mediates hypothermia and lethality in a mouse model of TNF-induced shock, reflecting the hyperinflammatory state of systemic inflammatory response syndrome (SIRS), where the proinflammatory "cytokine storm" has long been viewed as detrimental. Here, we demonstrate that cytokine and chemokine levels did not predict survival and, importantly, that kinase-inactive Ripk1D138N/D138N hematopoietic cells afforded little protection from TNF- or TNF/zVAD-induced shock in reconstituted mice. Unexpectedly, RIPK1 kinase-inactive mice transplanted with WT hematopoietic cells remained resistant to TNF-induced shock, revealing that a nonhematopoietic lineage mediated protection. TNF-treated Ripk1D138N/D138N mice exhibited no significant increases in intestinal or vascular permeability, nor did they activate the clotting cascade. We show that TNF administration damaged the liver vascular endothelium and induced phosphorylated mixed lineage kinase domain-like (phospho-MLKL) reactivity in endothelial cells isolated from TNF/zVAD-treated WT, but not Ripk1D138N/D138N, mice. These data reveal that the tissue damage present in this SIRS model is reflected, in part, by breaks in the vasculature due to endothelial cell necroptosis and thereby predict that RIPK1 kinase inhibitors may provide clinical benefit to shock and/or sepsis patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。