Polydopamine Decorated Microneedles with Fe-MSC-Derived Nanovesicles Encapsulation for Wound Healing

聚多巴胺修饰微针与 Fe-MSC 衍生纳米囊泡包覆用于伤口愈合

阅读:4
作者:Wenjuan Ma, Xiaoxuan Zhang, Yuxiao Liu, Lu Fan, Jingjing Gan, Weilin Liu, Yuanjin Zhao, Lingyun Sun

Abstract

Wound dressing with the capacities of antioxidation, antiinflammation, and efficient angiogenesis induction is expected for effectively promoting wound healing. Herein, a novel core-shell hyaluronic acid (HA) microneedle (MN) patch with ferrum-mesenchymal stem cell-derived artificial nanovesicles (Fe-MSC-NVs) and polydopamine nanoparticles (PDA NPs) encapsulated in the needle tips is presented for wound healing. Fe-MSC-NVs containing multifunctional therapeutic cytokines are encapsulated in the inner HA core of the MN tips for accelerating angiogenesis. The PDA NPs are encapsulated in the outer methacrylated hyaluronic acid (HAMA) shell of the MN tips to overcome the adverse impacts from reactive oxygen species (ROS)-derived oxidative stress. With the gradual degradation of HAMA patch tips in the skin, the PDA NPs are sustainably released at the lesion to suppress the ROS-induced inflammation reaction, while the Fe-MSC-NVs significantly increase the migration, proliferation, and tube formation of human umbilical vein endothelial cells (HUVEC). More attractively, the combination of PDA NPs and Fe-MSC-NVs further promotes M2 macrophage polarization, thereby suppressing wound inflammation. Through in vivo experiment, the Fe-MSC-NVs/PDA MN patch shows an excellent effect for diabetic wound healing. These features of antioxidation, antiinflammation, and pro-angiogenesis indicate the proposed composite core-shell MN patch is valuable for clinical wound healing applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。