Stability and anti-inflammatory activity of the reduction-resistant curcumin analog, 2,6-dimethyl-curcumin

抗还原姜黄素类似物 2,6-二甲基姜黄素的稳定性和抗炎活性

阅读:7
作者:Akil I Joseph, Rebecca L Edwards, Paula B Luis, Sai Han Presley, Ned A Porter, Claus Schneider

Abstract

The efficacy of the curry spice compound curcumin as a natural anti-inflammatory agent is limited by its rapid reductive metabolism in vivo. A recent report described a novel synthetic derivative, 2,6-dimethyl-curcumin, with increased stability against reduction in vitro and in vivo. It is also known that curcumin is unstable at physiological pH in vitro and undergoes rapid autoxidative transformation. Since the oxidation products may contribute to the biological effects of curcumin, we tested oxidative stability of 2,6-dimethyl-curcumin in buffer (pH 7.5). The rate of degradation was similar to curcumin. The degradation products were identified as a one-carbon chain-shortened alcohol, vanillin, and two isomeric epoxides that underwent cleavage to vanillin and a corresponding hydroxylated cleavage product. 2,6-Dimethyl-curcumin was more potent than curcumin in inhibiting NF-κB activity but less potent in inhibiting expression of cyclooxygenase-2 in LPS-activated RAW264.7 cells. 2,6-Dimethyl-curcumin and some of its degradation products covalently bound to a peptide that contains the redox-sensitive cysteine of IKKβ kinase, the activating kinase upstream of NF-κB, providing a mechanism for the anti-inflammatory activity. In RAW264.7 cells vanillin, the chain-shortened alcohol, and reduced 2,6-dimethyl-curcumin were detected as major metabolites. These studies provide new insight into the oxidative transformation mechanism of curcumin and related compounds. The products resulting from oxidative transformation contribute to the anti-inflammatory activity of 2,6-dimethyl-curcumin in addition to its enhanced resistance against enzymatic reduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。