Hepatocyte growth factor inhibits TGF-β1-induced myofibroblast differentiation in tendon fibroblasts: role of AMPK signaling pathway

肝细胞生长因子抑制 TGF-β1 诱导的肌腱成纤维细胞分化:AMPK 信号通路的作用

阅读:7
作者:Qingbo Cui, Songbin Fu, Zhaozhu Li

Abstract

The transforming growth factor-β1 (TGF-β1)-induced myofibroblastic differentiation in tendon fibroblasts was thought to be one of the most important features of scar fibrosis formation, which is associated with occurrence of re-rupture. Previously, we reported that hepatocyte growth factor (HGF) inhibited TGF-β1-induced myofibroblast differentiation and extracellular matrix deposition in the Achilles tendon of rats. Here, we investigated the potential molecular mechanisms underlying the inhibitory effect of HGF on TGF-β1-induced myofibroblast differentiation. We found that treatment with HGF (10, 20, and 40 ng/ml) increased phosphorylation of adenosine monophosphate kinase (AMPK) and acetyl-CoA carboxylase (ACC) in tendon fibroblasts. Pharmacological inhibition of the AMPK signaling pathway using compound C, a specific blocker of AMPK signaling, remarkably attenuated the inhibitory effect of HGF on TGF-β1-induced myofibroblastic differentiation in tendon fibroblasts. Moreover, small interfering RNA (siRNA)-mediated knockdown of AMPKα1 subunit decreased the inhibitory effect of HGF on TGF-β1-induced myofibroblastic differentiation in tendon fibroblasts. Finally, overexpression of constitutively active AMPKα1, which led to constitutive activation of the AMPK signaling pathway in tendon fibroblasts, mimicked the inhibitory effect of HGF on the TGF-β1-induced myofibroblastic differentiation. Our study therefore suggests that HGF inhibits TGF-β1-induced myofibroblastic differentiation via an AMPK signaling pathway-dependent manner in tendon fibroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。