Umbilical Cord Mesenchymal Stem Cells Combined with Fufang Xueshuantong Capsule Attenuate Oxidative Stress and Vascular Lesions in Diabetic Rats by Activating Nrf-2/HO-1 Signaling Pathway

脐带间充质干细胞联合复方血栓通胶囊激活Nrf-2/HO-1信号通路减轻糖尿病大鼠氧化应激及血管病变

阅读:7
作者:Yunchao Sun, Yongzhang Li, Xueliang Gao, Limin Gao, Bingqi Yang, Jianing Zhao

Background

Macrovascular lesions are the main cause of death and disability in diabetes mellitus, and excessive accumulation of cholesterol and lipids can lead to long-term and repeated damage of vascular endothelial cells. Umbilical cord mesenchymal stem cells (UCMSCs) can attenuate vascular endothelial damage in type 1 diabetic mice, while Fufang Xueshuantong capsule (FXC) has a protective effect on endothelial function; however, whether FXC in combination with UCMSCs can improve T2DM macrovascular lesions as well as its mechanism of action are not clear. Therefore, the

Conclusion

Our data suggest that FXC+UCMSCs may attenuate oxidative stress injury and macroangiopathy in T2DM by activating the Nrf-2/HO-1 pathway.

Methods

The control and T2DM groups were intragastrically administered with equal amounts of saline, the UCMSCs group was injected with UCMSCs (1×106, resuspended cells with 0.5 mL PBS) in the tail vein, the FXC group was intragastrically administered with 0.58 g/kg FXC, and the UCMSCs + FXC group was injected with UCMSCs (1×106) in the tail vein, followed by FXC (0.58 g/kg), for 8 weeks.

Results

We found that FXC+UCMSCs effectively reduced lipid levels (TG, TC, and LDL-C) and ameliorated aortic lesions in T2DM rats. Meanwhile, Nrf2 and HO-1 expression were upregulated. We demonstrated that inhibition of Nrf-2 expression blocked the inhibitory effect of FXC+UCMSCs-CM on apoptosis and oxidative stress injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。