Antagonizing midkine accelerates fracture healing in mice by enhanced bone formation in the fracture callus

拮抗中期因子通过增强骨折愈合组织中的骨形成来加速小鼠的骨折愈合

阅读:4
作者:Melanie Haffner-Luntzer, Aline Heilmann, Anna Elise Rapp, Robin Roessler, Thorsten Schinke, Michael Amling, Anita Ignatius, Astrid Liedert

Background and purpose

Previous findings suggest that the growth and differentiation factor midkine (Mdk) is a negative regulator of osteoblast activity and bone formation, thereby raising the possibility that a specific Mdk antagonist might improve bone formation during fracture healing. Experimental approach: In the present study, we investigated the effects of a monoclonal anti-Mdk antibody (Mdk-Ab) on bone healing using a standardized femur osteotomy model in mice. Additional in vitro experiments using chondroprogenitor and preosteoblastic cells were conducted to analyse the effects of recombinant Mdk and Mdk-Ab on differentiation markers and potential binding partners in these cells. Key

Purpose

Previous findings suggest that the growth and differentiation factor midkine (Mdk) is a negative regulator of osteoblast activity and bone formation, thereby raising the possibility that a specific Mdk antagonist might improve bone formation during fracture healing. Experimental approach: In the present study, we investigated the effects of a monoclonal anti-Mdk antibody (Mdk-Ab) on bone healing using a standardized femur osteotomy model in mice. Additional in vitro experiments using chondroprogenitor and preosteoblastic cells were conducted to analyse the effects of recombinant Mdk and Mdk-Ab on differentiation markers and potential binding partners in these cells. Key

Results

We demonstrated that treatment with Mdk-Ab accelerated bone healing in mice based on increased bone formation in the fracture callus. In vitro experiments using preosteoblastic cells showed that Mdk-Ab treatment abolished the Mdk-induced negative effects on the expression of osteogenic markers and Wnt/β-catenin target proteins, whereas the differentiation of chondroprogenitor cells was unaffected. Phosphorylation analyses revealed an important role for the low-density lipoproteinLDL receptor-related protein 6 in Mdk signalling in osteoblasts. Conclusions and implications: We conclude that Mdk-Ab treatment may be a potential novel therapeutic strategy to enhance fracture healing in patients with orthopaedic complications such as delayed healing or non-union formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。