Electroacupuncture relieves chronic pain by promoting microglia M2 polarization in lumbar disc herniation rats

电针促进小胶质细胞M2极化缓解腰椎间盘突出症大鼠慢性疼痛

阅读:9
作者:Jia-Xuan Yang, Jiang Zhu, Kun Ni, Hai-Kou Yang, Hai-Long Zhang, Zheng-Liang Ma

Abstract

Electroacupuncture has an effective analgesia on chronic pain caused by lumbar disc herniation (LDH) clinically, however, the underlying mechanism is unclear. In this study, we investigated whether electroacupuncture alleviated pain in LDH model rats by inducing spinal microglia M2 polarization. We established a noncompression LDH rat model by implanting autologous caudal nucleus pulposus into L5/L6 nerve root. Electroacupuncture (30 min/day) treatment on the ipsilateral side was started on the 8th postoperative day, once a day for consecutive 7 days. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were tested for pain behavior. Western blotting was used to detect the protein expression in lumbar enlargement (L5/L6). Immunofluorescence was used to detect iNOS+/Iba-1+ and Arg-1+/Iba-1+ and CB2R+/Iba-1+ in lumbar enlargement (L5/L6). We show that PWT and PWL decreased in the LDH group while Iba-1, iNOS, and TNF-α expression increased significantly in lumbar spinal dorsal horn (SDH) after LDH surgery, and revealing that microglia were activated and polarized towards proinflammatory M1 phenotype. Electroacupuncture treatment significantly increased PWT and PWL while reducing Iba-1, iNOS, and TNF-α expression, interestingly, Arg-1 and IL-10 expression were significantly increased. Moreover, electroacupuncture treatment led to CB2 receptors on microglia upregulation, while NF-κB and p-NF-κB expression in lumbar SDH downregulation. Our study indicated that electroacupuncture may reduce nociceptive hyperalgesia by inhibiting microglia activation and microglia M1 polarization and promoting microglia M2 polarization in lumbar SDH of LDH rats, which may be caused by the activation of CB2 receptors on microglia and inhibition of NF-κB pathway in lumbar SDH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。