Slow-Cycling Cells in Glioblastoma: A Specific Population in the Cellular Mosaic of Cancer Stem Cells

胶质母细胞瘤中的慢循环细胞:癌症干细胞细胞镶嵌体中的特定群体

阅读:5
作者:Changlin Yang, Guimei Tian, Mariana Dajac, Andria Doty, Shu Wang, Ji-Hyun Lee, Maryam Rahman, Jianping Huang, Brent A Reynolds, Matthew R Sarkisian, Duane Mitchell, Loic P Deleyrolle

Abstract

Glioblastoma (GBM) exhibits populations of cells that drive tumorigenesis, treatment resistance, and disease progression. Cells with such properties have been described to express specific surface and intracellular markers or exhibit specific functional states, including being slow-cycling or quiescent with the ability to generate proliferative progenies. In GBM, each of these cellular fractions was shown to harbor cardinal features of cancer stem cells (CSCs). In this study, we focus on the comparison of these cells and present evidence of great phenotypic and functional heterogeneity in brain cancer cell populations with stemness properties, especially between slow-cycling cells (SCCs) and cells phenotypically defined based on the expression of markers commonly used to enrich for CSCs. Here, we present an integrative analysis of the heterogeneity present in GBM cancer stem cell populations using a combination of approaches including flow cytometry, bulk RNA sequencing, and single cell transcriptomics completed with functional assays. We demonstrated that SCCs exhibit a diverse range of expression levels of canonical CSC markers. Importantly, the property of being slow-cycling and the expression of these markers were not mutually inclusive. We interrogated a single-cell RNA sequencing dataset and defined a group of cells as SCCs based on the highest score of a specific metabolic signature. Multiple CSC groups were determined based on the highest expression level of CD133, SOX2, PTPRZ1, ITGB8, or CD44. Each group, composed of 22 cells, showed limited cellular overlap, with SCCs representing a unique population with none of the 22 cells being included in the other groups. We also found transcriptomic distinctions between populations, which correlated with clinicopathological features of GBM. Patients with strong SCC signature score were associated with shorter survival and clustered within the mesenchymal molecular subtype. Cellular diversity amongst these populations was also demonstrated functionally, as illustrated by the heterogenous response to the chemotherapeutic agent temozolomide. In conclusion, our study supports the cancer stem cell mosaicism model, with slow-cycling cells representing critical elements harboring key features of disseminating cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。