Effects of suppressing Smads expression on wound healing in Hyriopsis cumingii

抑制Smads表达对三角帆蚌伤口愈合的影响

阅读:6
作者:Zhenfang Li, Ming Xing Zhu, Baoqing Hu, Wenxiu Liu, Jielian Wu, Chungen Wen, Shaoqing Jian, Gang Yang

Abstract

As a specific pearl mussel in China, Hyriopsis cumingii has enormous economic value. However, the organism damage caused by pearl insertion is immeasurable. TGF-β/Smad signal transduction pathways are involved in all phases of wound healing. We have previously reported on two cytoplasmic signal transduction factors, Smad3 and Smad5 in mussel H. cumingii (named HcSmads), suggesting their involvements in wound healing. Here, Smad4 was cloned and described. The full length cDNA of HcSmad4 was 2543 bp encoded 515 amino acids. Deduced HcSmad4 protein possessed conserved MH1 and MH2 domains, nuclear location signals (NLS), nuclear exput signals (NES) and Smad activation domain (SAD). Transcripts of Smad3, 4 and 5 were constitutively expressed in all detected tissues, at highest levels in muscles. Furthermore, HcSmad4 mRNA levels were significantly increased at incision site post wounding, and expression of downstream target genes of Smad4, such as HcMMP1, HcMMP19, HcTIMP1 and HcTIMP2 were upregulated to a certain extent. Whatever knocked down HcSmad3/4 or treated by specific inhibitors of Smad 3 (SIS3), expression levels of these genes displayed a significantly downregulated tendency compared with the wound group. In addition, histological evaluation suggested that Smad3 knockdown or SIS3 treatment was accelerated wound healing, and then Smad4 knockdown delayed the process of wound healing in mussels. These data implicate that Smad3/4 play an important role in tissue repair in mollusks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。