Stacking Machine Learning Algorithms for Biomarker-Based Preoperative Diagnosis of a Pelvic Mass

基于生物标志物的盆腔肿块术前诊断的堆叠机器学习算法

阅读:5
作者:Reid Shaw, Anna E Lokshin, Michael C Miller, Geralyn Messerlian-Lambert, Richard G Moore

Conclusions

Combining the measurement of three distinct biomarkers with the stacking of multiple ML classifiers into an ensemble can provide valuable preoperative diagnostic predictions for patients with a pelvic mass.

Methods

Retrospective study of 70 predictive parameters collected from 140 women with a pelvic mass. The women were split into a 3:1 "training" to "testing" dataset. Feature selection was performed using Gini impurity through an embedded random forest model and principal component analysis. Nine unique ML classifiers were assessed across a variety of model-specific hyperparameters using 25 bootstrap resamples of the training data. Model predictions were then combined into an ensemble stack by LASSO regression. The final ensemble stack and individual classifiers were then applied to the testing dataset to assess model performance.

Objective

To identify the most predictive parameters of ovarian malignancy and develop a machine learning (ML) based algorithm to preoperatively distinguish between a benign and malignant pelvic mass.

Results

Feature selection identified HE4, CA125, and transferrin as three predictive parameters of malignancy. Assessment of the ensemble stack on the testing dataset outperformed all individual ML classifiers in predicting malignancy. The ensemble stack demonstrated an accuracy of 97.1%, a receiver operating characteristic (ROC) area under the curve (AUC) of 0.951, and a sensitivity of 93.3% with a specificity of 100%. Conclusions: Combining the measurement of three distinct biomarkers with the stacking of multiple ML classifiers into an ensemble can provide valuable preoperative diagnostic predictions for patients with a pelvic mass.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。