Adenine Base Editing In Vivo with a Single Adeno-Associated Virus Vector

利用单个腺相关病毒载体进行体内腺嘌呤碱基编辑

阅读:12
作者:Han Zhang, Nathan Bamidele, Pengpeng Liu, Ogooluwa Ojelabi, Xin D Gao, Tomás Rodriguez, Haoyang Cheng, Karen Kelly, Jonathan K Watts, Jun Xie, Guangping Gao, Scot A Wolfe, Wen Xue, Erik J Sontheimer

Abstract

Base editors (BEs) have opened new avenues for the treatment of genetic diseases. However, advances in delivery approaches are needed to enable disease targeting of a broad range of tissues and cell types. Adeno-associated virus (AAV) vectors remain one of the most promising delivery vehicles for gene therapies. Currently, most BE/guide combinations and their promoters exceed the packaging limit (∼5 kb) of AAVs. Dual-AAV delivery strategies often require high viral doses that impose safety concerns. In this study, we engineered an adenine base editor (ABE) using a compact Cas9 from Neisseria meningitidis (Nme2Cas9). Compared with the well-characterized Streptococcus pyogenes Cas9-containing ABEs, ABEs using Nme2Cas9 (Nme2-ABE) possess a distinct protospacer adjacent motif (N4CC) and editing window, exhibit fewer off-target effects, and can efficiently install therapeutically relevant mutations in both human and mouse genomes. Importantly, we show that in vivo delivery of Nme2-ABE and its guide RNA by a single AAV vector can efficiently edit mouse genomic loci and revert the disease mutation and phenotype in an adult mouse model of tyrosinemia. We anticipate that Nme2-ABE, by virtue of its compact size and broad targeting range, will enable a range of therapeutic applications with improved safety and efficacy due in part to packaging in a single-vector system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。