Ganoderma lucidum polysaccharide peptide (GLPP) attenuates rheumatic arthritis in rats through inactivating NF-κB and MAPK signaling pathways

灵芝多糖肽(GLPP)通过抑制NF-κB和MAPK信号通路减轻大鼠风湿性关节炎

阅读:6
作者:Meng Meng, Lianfu Wang, Yang Yao, DongMei Lin, Changyuan Wang, Jialin Yao, Huijun Sun, Mozhen Liu

Background

Not many drugs with fewer side effects are available for the treatment of rheumatoid arthritis (RA). Ganoderma lucidum polysaccharide peptide (GLPP) has good immunomodulatory effects, but whether it is effective in managing RA is not clear.

Conclusion

GLPP effectively alleviated RA symptoms in CIA rats by inhibiting the NF-κB and MAPK pathways. This study suggests a promising therapeutic effect of mushroom-derived polysaccharide peptides on RA.

Methods

Male Wistar rats were intradermally injected with bovine type II collagen in the tail base to establish the CIA model and were orally administered 100 or 200 mg/kg GLPP for 35 days. Paw thickness, clinical arthritis scores, gait analysis, organ index determination, blood cell counts, micro-CT imaging and pathological staining were performed on the rats. Liver and kidney function were measured by commercial kits, and antibody levels were measured by ELISA kits. RA-related protein levels were detected by Western blotting.

Purpose

This study was conducted to examine the anti-RA activity and possible mechanisms of GLPP in collagen-induced arthritis (CIA) rats.

Results

GLPP effectively alleviated CIA symptoms and reduced immune organ indexes, antibody levels and systemic organ injury. GLPP decreased the protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, matrix metalloproteinase (MMP)2, MMP9, MMP13, BCL-2, OPN, β-Catenin, and hypoxia inducible factor (HIF)-1α and increased the protein expression of BAX in the joint tissues of CIA rats. Moreover, GLPP decreased the phosphorylation levels of p65, IκB-α and ERK1/2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。